APEX STANDARDS US-8,224,282-B2: Invalidity Assessment using Knowledge Graph and Claim Construction

Case Study Tech Report C20000242 Unclassified 21 May 2022

Page 1/2

n March and April of this year, Ollnova Technologies, a non-practicing entity (NPE) based in Ireland, filed infringement lawsuits along the district courts of Texas and Florida against major household IoT companies including Resideo (a Honeywell spin-off), Emerson, Carrier Global, Ecobee, and Google. An allegedly infringed patent is US-8,224,282-82, "Method and method to regulate power of wireless multi-sensor devices," which was originally owned by Siemens Industry.

Using this patent as an example, we illustrate an alternate prior art search strategy that enables stakeholders to evaluate the risk of a patent's validity from a visual, holistic standpoint.

The first step is to come up with a list of potential prior art candidates. We construct a citation network by utilizing the Apex Standards Knowledge Graph, with US-8,224,282-B2 serving as the seed patent, and pull out the other patents either citing or cited by the seed patent, both directly and indirectly. We track down these citation edges in search of root prior arts relevant specifically to the seed patent.

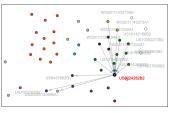


Figure 2. Call out - when a user clicks on a seed patent, only the citation links into and out of the seed patent are displayed, obscuring all other information. For example, the seed patent points to two purple nodes, indicating its backward citation relationship into StatSignal Systems patents US6437692B1 and US7053767B2, to its left. The other way around, multiple green and brown nodes points to the seed patent from the top, indicating their forward citation relationship, and, a potential upper hand over iControl's and Ucontrol's portfolios.

Visualizing the Seed Patent's Vicinity: a Citation Landscape Renders Clarity.

By visually examining Figure 1, we identify citation patterns stated in the caption. As illustrated in Figures 2-8, we can distinguish between patents in the hub and those in the periphery, and then explore based on our interest. In this induced network, we note that even

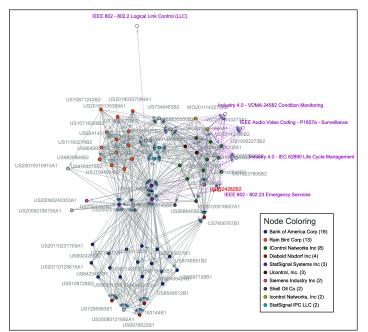


Figure 1. Apex Standards Knowledge Graph is constructed by using US-8,224,282-B2 as a seed patent (positioned at the center right and highlighted in red). In the upper right corner, the construction also incorporates industrial standards that are relevant to some of the network's patents, including the Industry 4.0 standards IEC 62890 Life Cycle Management and VDMA 24582 Condition Monitoring, IEEE P1857a Surveillance, and IEEE 802.23 Emergency Services. Along the citation edges, we spot root prior arts pertaining to the seed patent. By quantity, Bank of America appears to have the most patents in this construction, totaling 16, which are located in the lower half and colored in blue. Rain Bird has 13, located in the upper left corner and colored in orange, followed by iControl, with 8 patents in green, located in the upper right above the seed patent and near the industrial standard nodes in purple texts.

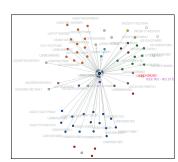


Figure 3. Step through - following onto one of the seed patent's citations, US6437692B1, we observe that it is pointed by virtually all of the other nodes in this network. This indicates that it demonstrates its position as an important stepping stone in the vicinity on which later inventions depend.

if certain prior art references were not cited by the seed patent, i.e., they were not considered by the USPTO examiner initially, they may nevertheless be relevant, either directly or indirectly.

Genghis Khan Prior Art: an Anticipatory Power Analysis

Certain highly cited patents may appear to be more anticipatory, as they may be traceable to the prior art of prior art, via the backward citation chains. Modern graph theory tools assign scores based on the degree of ancestry, such as an Authority Score, a Hub Score, a Centrality Score, or a PageRank score; heuristically, a patent would obtain a higher score if it is located in a hub and a lower score if it is located on the periphery. However, they may be black boxes that are not always explanable for legal practitioners, despite their seeming simplicity. For instance, if patent A receives a score of 8.8 and patent B receives a score of 8.7, and both are highly ranked, does that teach anything about their relative positioning, or is it possible to determine subject matter similarity to the seed patent, and how.

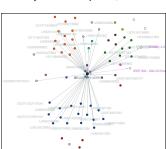


Figure 4. Beneath US6437692B1 is another purple node, representing another StatSignal art; this time, it is a pre-grant publication (PGPUB), US20060181406A. Clicking on it, we discover that it is also highly cited, with a crucial distinction, however, that it is not cited by the seed patent.

Figure 5. On the network's upper half, another widely cited patent art, US6914533B2, catches attention, which appears to be yet another StatSignal prior art, but under a slightly different entity name, "StatSignal IPC LLC." Neither is it cited by the seed patent.

Finally, "all" (most) post arts can be identified, selected, and prioritized by the citation network construction. As a result, it enables due diligence, i.e., it should identify as many relevant arts as possible to either invalidate the seed patent or provide confidence that the seed patent is robust and assertive enough to be used in an infringement case. As another example, the construction renders critical insight into high-dollar acquisition decisions that, if explored and understood, shall overcompensate the buyer.

Subject Matter Relevance and Invalidity Risk Exposure Analysis: Claim Construction Cross Checking

Following the selection of candidate prior arts, one begins to compare their subject matters. A researcher may arrive at various interpretations depending on his or her point of view. Multiple claim constructions can be performed so that feature terms are better matched and aligned, making comparison easier for the researcher. See Table 1 (Page 2).

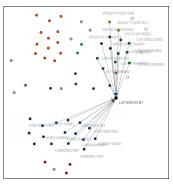


Figure 6. On the right side of the network, the Diebold Nixdorf patent US7606767B1 (in red) just beneath the seed patent receives numerous citations. The seed patent does not cite it. Intriguingly, it is cited primarily by IControl patents (in green) and Bank of America patents (in blue), but neither by Rain Bird patents (in orange) nor StatSignal patents (in purple), signaling a possible subject matter dissection.

APEX STANDARDS US-8,224,282-B2: Invalidity Assessment using Knowledge Graph and Claim Construction

Case Study Tech Report C20000242 Unclassified 21 May 2022

Page 2/2

Knowledge is Power, When One Sees Both Broadly and Deeply at Once.

This enables one to keep clues close at hand while working through the multi-step reasoning problem, from prior art identification to selection to interpretation.

Such incremental reasoning allows for the decomposition of complex claim language into feature terms and intermediate steps that can be understood and connected individually, allowing for the complete picture to be seen while minimizing blindspots.

References

[1] Litigation records of US-8,224,282-B2 https://portal.unifiedpatents.com/litigation /caselist?patents=8224282 [2] Apex Standards Knowledge Graph www.apexstandards.com/askgen.mp4 [3] Apex Standards Claim Construction www.apexstandards.com/ascconst.pdf

No conflict of interest. Apex Standards is not involved in any manner in this or any relevant litigation proceedings pertaining to US-8,224,282-B2.

DISCLAIMER. NO LIABILITY FOR APEX STANDARDS DAMAGE AS A RESULT OF THIS REPORT. APEX STANDARDS SHALL NOT BE LIABLE FOR ANY SPECIAL INCIDENTAL, EXEMPLARY, PUNITIVE, MULTIPLE, CONSEQUENTIAL, OR INDIRECT DAMAGES (INCLUDING LOST PROFITS, COSS OF DATA, OR LOSS OF USE), WHETHER BASED ON WARRANTY, CONTRACT, TORT, STRICT LIABILITY, OR OTHERWISE. EXCEPT AS EXPRESSLY STATED HEREIN, THIS REPORT AND ITS CONTENTS ARE PROVIDED "AS 15," WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, SATISFACTORY QUALITY,

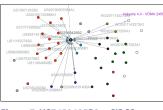


Figure 7. US7650425B2, a SIPCO patent, is cited by all Rain Bird patents (in orange), by two lcontrol patents (in grass green), by two Ucontrol patents (in brown), and, most notably, by three StatSignal patents (in purple). Neither the Bank of America cluster nor the seed patent cites it.

ACCURACY OF INFORMATIONAL CONTENT, OR A READER ASSUMES ALL RISK ASSOCIATED WITH THE USE OF THIS REPORT, ITS DATA, AND ANALYSIS. IN NO EVENT SHALL APEX STANDARDS BE LIABLE TO THE READERS OR ANY OTHER PERSON FOR ANY SPECIAL, INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES.

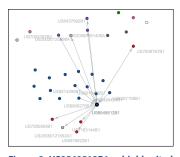


Figure 8. US8549512B1, a highly cited Bank of America patent (in blue): as one would ask how a financial firm invents in the IoT domain. The patent, along with the others in the Bank of America cluster, relates to self-service reporting and managements of an ATM server. Interestingly, it cites all three StatSignal patents (in purple) and all four Diebold Nixdorf patents (in red).

	Litigated Patent	Reference 1	Reference 2	Reference 3	Reference 4	Reference 5
Patent No	US-8224282-B2	US-6437692-B1	US-20060181406-A1	US-6914533-B2	US-7606767-B1	US-7650425-B2
Title	manage power of wireless	monitoring and	monitoring and	accessing residential	Cash dispensing automated	controlling between a
	multi-sensor devices	controlling remote devices	controlling remote devices	monitoring devices	banking machine	host computer and
			Ū			communication devices
Position	Figure 2	Figure 3	Figure 4	Figure 5	Figure 6	Figure 7
Original Assignee	Siemens Industry	StatSignal Systems	StatSignal Systems	StatSignal IPC LLC	Diebold Nixdorf	Sipco
Current Assignee	Ollnova Tech	Sipco	Sipco	Sipco	Diebold Nixdorf	Sipco
Considered by		Yes	No	No	No	No
USPTO examiner						
Apex Standards	www.apexstandards.com	www.apexstandards.com	www.apexstandards.com	www.apexstandards.com	www.apexstandards.com	www.apexstandards.com
Claim	/pcc/US8224282B2	/pcc/US6437692B1	/pcc/US20060181406A1	/pcc/US6914533B2	/pcc/US7606767B1	/pcc/US7650425B2
Construction	construction/	construction/	construction/	construction/	construction/	construction/
[Feature] and	[automation component]	[wireless system]	[wireless sensor network]	[multi sensor smoke alarm	[banking transaction	[site controller]
Construction	intelligent automation	for remote data collection	wireless transceiver devices	system]	management]	for controlling
	component configured to	and assembly and storage	configured to wirelessly	sensor housing having an	for providing an application	communication with remote
Subject Matter	control sensor data in	for use in an industrial	transmit select information	opening for receiving an	markup language document	devices and communicating
Cross Matching	response to sensor control	process control	and identification	indicator of the smoke	to an ATM in response to	devices
	information	environment	information to and from	condition	configuration data	
			sensors in an automated			
			manner			
	[building automation	[remote data collection]	[monitoring of sensors for	[alarm signal]	[sever computer]	[host computer]
	system]	control of an electronic	calibration]	upon detecting the smoke	capable of receiving from at	with at least one remote
	home automation system	device by wireless	transmission of select	condition or receiving an	least one remote computing	device in an industrial
	and configured to control	transmission of select	information from remote	alarm signal from an	device	environment having the site
	the home automation	information to the	locations to central locations	intended receiving		controller that is to be
	system in response to	electronic device for	for processing and storage	communication device		monitored and controlled by
	sensor control information	subsequent processing	to facilitate data collection			the host computer
	[sensor package]	[collection assembly]	[data processing and	[indication of the alarm	[configuration data]	[interconnected remote
	plurality of sensors	transmission and storage of	analysis]	signal]	associated with at least one	devices]
	configured to communicate	select information from	analysis and reporting of	event notification signal to	application markup	site controllers connected to
	with the building	remote locations to remote	sensors electrically interface	the remote monitoring	language document for	the first communication
	automation system	locations for retrieval upon	with wireless transceiver	device in response to the	sending to at least one of a	network and to the host
	wirelessly	demand for collection and	devices and configured to	alarm signal and	plurality of ATMs	computer via one or more of
		transmission	perform data format conversion	transmitting indicative information		communication devices
	[control]	[demand from a remotely	[a plurality of transceivers	[sending a command	[application instructions]	[target communication
	communication with the	located device]	dispersed geographically]	indicator]	an Application Program	device]
	building automation system	command from the	transceiver interface	serial number of the smoke	Interface for the ATM and	first communication
	in response to an event	computer that formats and	coupled to the WAN and	detector and an	includes at least one portion	network to identify the
	which is detected	stores transceiver	configured to communicate	identification number of the	of application instructions	target communication
		identification information	with sensors distant from	intended receiving	that are adapted to be	device to which the host
		for retrieval upon command	one another located in the	communication device	executed by at least one	computer is connected
		from the computer	environment		computer in the ATM	
35 U.S.C. § 102		Anticipation	Anticipation	Anticipation	Anticipation	Anticipation
		teaches a remote control	discloses a mobile device	N/A	N/A	disclose an electric smart
		system for controlling	incorporating a position			meter enabling demand
		remotely electronic	reporting device, comprising			response comprising a
		equipment connected via	a receiver configured to			memory stored with a
			receive location signals from			power rate system
			at least two known locations			
35 U.S.C. § 103		Obviousness	Obviousness	Obviousness	Obviousness	Obviousness
		discloses a thermostat IO	teaches performing data	discloses a method system	N/A	teaches discovering active
		comprising a temperature	accesses according to a	for accessing residential		sensors and opening a
		sensor transceiver interface	predetermined schedule a	monitoring devices		communication session over
		with energy provider	queue and a priority scheme			a network between the first
			paragraphs			and the second devices
35 U.S.C. § 325		Deniable	N/A	N/A	N/A	N/A

Table 1. After candidate prior arts are selected, feature terms are automatically interpreted and compared, allowing legal grounds to be inferred for further evaluation.